随着人格计算的出现作为与人工智能和人格心理有关的新研究领域,我们目睹了一个前所未有的人格意识推荐系统的扩散。与传统推荐系统不同,这些新系统解决了传统问题,如冷启动和数据稀疏问题。该调查旨在研究和系统地分类人格意识推荐系统。据我们所知,这项调查是第一个重点关注人格意识推荐系统。通过比较其个性建模方法以及其推荐技术,我们探索了人格感知推荐系统的不同设计选择。此外,我们介绍了常用的数据集,并指出了人格感知推荐系统的一些挑战。
translated by 谷歌翻译
Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern. An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients. This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model through federated learning (FL), using both secure multiparty computation (MPC) to ensure the confidentiality of each gradient update, and differential privacy to avoid data leakage in the resulting model. A major challenge in this setting is that common mechanisms for enforcing DP in deep learning, which inject real-valued noise, are fundamentally incompatible with MPC, which exchanges finite-field integers among the participants. Consequently, most existing DP mechanisms require rather high noise levels, leading to poor model utility. Motivated by this, we propose Skellam mixture mechanism (SMM), an approach to enforce DP on models built via FL. Compared to existing methods, SMM eliminates the assumption that the input gradients must be integer-valued, and, thus, reduces the amount of noise injected to preserve DP. Further, SMM allows tight privacy accounting due to the nice composition and sub-sampling properties of the Skellam distribution, which are key to accurate deep learning with DP. The theoretical analysis of SMM is highly non-trivial, especially considering (i) the complicated math of differentially private deep learning in general and (ii) the fact that the mixture of two Skellam distributions is rather complex, and to our knowledge, has not been studied in the DP literature. Extensive experiments on various practical settings demonstrate that SMM consistently and significantly outperforms existing solutions in terms of the utility of the resulting model.
translated by 谷歌翻译
$ \ mathbf {perive} $:使用人工智能(AI)到:(1)从相对较大的人群中利用视神经头(ONH)的生物力学知识; (2)评估ONH的单个光学相干断层扫描(OCT)扫描的稳健性; (3)确定哪些关键的三维(3D)结构特征使给定的ONH稳健。 $ \ Mathbf {Design} $:回顾性横断面研究。 $ \ mathbf {Methods} $:316个受试者通过Ophthalmo-Dynamometry在急性眼内和之后与OCT成像。然后将IOP诱导的椎板胶状变形映射为3D,并用于对ONH进行分类。 LC变形高于4%的人被认为是脆弱的,而变形较低的人则较低4%。从这些数据中学习,我们比较了三种AI算法,以严格地从基线(未呈现的)OCT卷中预测鲁棒性:(1)随机森林分类器; (2)自动编码器; (3)动态图CNN(DGCNN)。后一种算法还使我们能够确定哪些关键的3D结构特征使给定的智能稳定。 $ \ mathbf {结果} $:所有3种方法都能够单独预测3D结构信息的稳健性,而无需执行生物力学测试。 DGCNN(接收器操作曲线下的区域[AUC]:0.76 $ \ pm $ 0.08)的表现优于自动编码器(AUC:0.70 $ \ pm $ 0.07)和随机森林分类器(AUC:0.69 $ \ pm $ 0.05)。有趣的是,为了评估稳健性,DGCNN主要使用了巩膜和LC插入部位的信息。 $ \ mathbf {结论} $:我们提出了一种AI驱动的方法,可以仅从ONH的单个OCT扫描中评估给定ONH的稳健性,而无需进行生物力学测试。纵向研究应确定ONH鲁棒性是否可以帮助我们确定快速的视野损失进展者。
translated by 谷歌翻译
目的:(1)开发深度学习算法,以识别3D光学相干断层扫描(OCT)扫描中的视神经头(ONH)的主要组织结构; (2)利用这些信息在健康,光盘博森(奇数)和乳头膜ONHS之间鲁棒地区分。由于高颅内压(51只眼)和健康对照(100只眼睛),这是一种横截面对比研究,由于高颅内压(51只眼睛),以及健康的对照(100只眼)。使用OCT获得ONH的3D扫描,然后加工以改善深层组织可见性。首先,使用984 B-Scans(从130只眼睛)开发了深度学习算法,以识别:主要的神经/结缔组织和奇数区域。使用骰子系数(DC)评估我们的算法的性能。在第2步骤中,使用1500Ct卷设计了一个分类算法(随机林),以严格从其德鲁森和普拉拉马那肿胀得分(来自细分)来执行3级分类(1:奇数,2:Papilledema,3:健康) )。为了评估性能,我们报告了每个类的接收器操作特征曲线(AUC)下的区域。我们的分割算法能够在存在时隔离神经和结缔组织和奇数区域。这是在测试集上的平均DC为0.93 $ 0.03的平均直流,相应于良好性能。分类是用高AUC的分类,即检测奇数,0.99美元0.01 0.01美元,用于检测Papilledema的0.99美元,0.98美元$ 0.02用于检测健康的ONH。我们的AI方法可以使用单个OCT扫描来准确地歧视奇数乳头。我们的分类表现非常出色,有需要在更大的人口中验证。我们的方法可能有可能建立10月作为神经眼科诊断成像的主干。
translated by 谷歌翻译
前列腺癌是美国男人的第二致致命癌症。虽然磁共振成像(MRI)越来越多地用于引导前列腺癌诊断的靶向活组织检查,但其效用仍然受到限制,因为假阳性和假否定的高率以及较低的读者协议。机器学习方法在前列腺MRI上检测和定位癌症可以帮助标准化放射科学诠释。然而,现有的机器学习方法不仅在模型架构中不等,而且还可以在用于模型培训的地面真理标签策略中。在这项研究中,我们比较不同的标记策略,即病理证实放射科标签,整个安装组织病理学图像上的病理学家标签,以及病变水平和像素级数字病理学家标签(先前验证了组织病理学图像上的深层学习算法以预测像素 - 整个安装组织病理学图像上的Gleason模式)。我们分析这些标签对训练有素的机器学习模型的性能的影响。我们的实验表明,用它们培训的(1)放射科标签和模型可能会错过癌症,或低估癌症程度,(2)与他们培训的数字病理学家标签和模型与病理学家标签有高度的一致性,而(3)用数字病理学家培训的模型标签在两种不同疾病分布的两种不同群组中达到最佳性能,而不管使用的模型建筑如何。数字病理学家标签可以减少与人类注释相关的挑战,包括劳动力,时间,和读者间变异性,并且可以通过使可靠的机器学习模型进行培训来检测和定位前列腺癌,帮助弥合前列腺放射学和病理学之间的差距在MRI。
translated by 谷歌翻译
为了定义最佳机器学习算法,该决定并不容易,我们将选择它。为了帮助未来的研究人员,我们在本文中描述了最好的算法中的最佳状态。我们构建了一个合成数据集,并执行了5个不同算法的监督机器学习。对于异质性,我们确定了随机森林等,是最好的算法。
translated by 谷歌翻译
目的:评估中央视网膜血管躯干及其分支(CRVT&B)的三维(3D)结构构型是否可用作青光眼的诊断标志物。方法:我们训练了深度学习网络,从光神经头(ONH)的光学相干断层扫描(OCT)体积的B-Scans自动分割CRVT&B。随后,使用从OCT体积中提取的CRVT&B的结构构型,两种不同的方法用于青光眼诊断。在第一种方法中,我们旨在仅使用CNN的3D CNN和CRVT&B的3D结构提供诊断。对于第二种方法,我们将CRVT&B的3D结构投射到三个平面上以获得2D图像,然后使用2D CNN进行诊断。使用骰子系数评估分割精度,而使用接收器操作特性曲线(AUC)下的区域评估诊断准确度。 CRVT&B的诊断性能也与视网膜神经纤维层(RNFL)厚度进行了比较。结果:我们的分割网络能够从OCT扫描有效地分段视网膜血管。在测试集上,我们实现了0.81 \ PM0.07的骰子系数。 3D和2D诊断网络能够将青光眼与非青光眼受试者区分别分别区分82.7%和83.3%的精度。 CRVT&B的相应AUC为0.89和0.90,高于用RNFL厚度获得的0.90℃。结论:我们的工作表明,CRVT&B的诊断功能优于金标 - 标准的青光眼参数,即RNFL厚度。我们的作品还建议主要视网膜血管形成骨架 - 其配置可以代表主要的ONH结构变化,通常观察到青光眼的开发和进展。
translated by 谷歌翻译
同态加密(HE),允许对加密数据(Ciphertext)进行计算,而无需首先解密,因此可以实现对云中隐私性的应用程序的安全性缓慢的卷积神经网络(CNN)推断。为了减少推理潜伏期,一种方法是将多个消息打包到单个密文中,以减少密文的数量并支持同型多态多重蓄能(HMA)操作的大量并行性。尽管HECNN的推断速度更快,但主流包装方案密集的包装(密度)和卷积包装(Convpack)仍将昂贵的旋转开销引入了昂贵的旋转开销,这延长了HECNN的推断潜伏期,以实现更深和更广泛的CNN体​​系结构。在本文中,我们提出了一种名为FFCONV的低级分解方法,该方法专门用于有效的密文填料,用于减少旋转台面和HMA操作。 FFCONV近似于低级分解卷积的A D X D卷积层,其中D X D低率卷积具有较少的通道,然后是1 x 1卷积以恢复通道。 D X D低级别卷积带有密度,导致旋转操作显着降低,而1 x 1卷积的旋转开销接近零。据我们所知,FFCONV是能够同时减少densepack和Convpack产生的旋转头顶的第一项工作,而无需将其他特殊块引入HECNN推理管道。与先前的Art Lola和Falcon相比,我们的方法分别将推理潜伏期降低了88%和21%,其精度在MNIST和CIFAR-10上具有可比的精度。
translated by 谷歌翻译